Multigrid Methods for the Biharmonic Problem Discretized by Conforming 1 Finite Elements on Nonnested Meshes

نویسندگان

  • JAMES BRAMBLE
  • XUEJUN ZHANG
چکیده

Abstract. We consider multigrid algorithms for the biharmonic problem discretized by conforming 1 finite elements. Most finite elements for the biharmonic equation are nonnested in the sense that the coarse finite element space is not a subspace of the space of similar elements defined on a refined mesh. To define multigrid methods, certain intergrid transfer operators have to be constructed. We construct intergrid transfer operators that satisfy a certain stable approximation property. The so-called regularity-approximation assumption is established by using this stable approximation property of the intergrid transfer operator. Optimal convergence properties of the W-cycle and a uniform condition number estimate for the variable V-cycle preconditioner are established by applying an abstract result of Bramble, Pasciak and Xu. Our theory covers the cases when the multilevel triangulations are nonnested and the spaces on different levels are defined by different finite elements.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Criteria for the approximation property for multigrid methods in nonnested spaces

We extend the abstract frameworks for the multigrid analysis for nonconforming finite elements to the case where the assumptions of the second Strang lemma are violated. The consistency error is studied in detail for finite element discretizations on domains with curved boundaries. This is applied to prove the approximation property for conforming elements, stabilized Q1/P0elements, and nonconf...

متن کامل

Optimal-order Nonnested Multigrid Methods for Solving Finite Element Equations Ii: on Non-quasi-uniform Meshes

Nonnested multigrid methods are proved to be optimal-order solvers for finite element equations arising from elliptic problems in the presence of singularities caused by re-entrant corners and abrupt changes in the boundary conditions, where the multilevel grids are appropriately refined near singularities and are not necessarily nested. Therefore, optimal and realistic finer grids (compared wi...

متن کامل

Optimal-order Nonnested Multigrid Methods for Solving Finite Element Equations I: on Quasi-uniform Meshes

We prove that the multigrid method works with optimal computational order even when the multiple meshes are not nested. When a coarse mesh is not a submesh of the finer one, the coarse-level correction usually does not have the a(-, •) projection property and does amplify the iterative error in some components. Nevertheless, the low-frequency components of the error can still be caught by the c...

متن کامل

Local Multilevel Methods for Adaptive Nonconforming Finite Element Methods

In this paper, we propose a local multilevel product algorithm and its additive version for linear systems arising from adaptive nonconforming finite element approximations of second order elliptic boundary value problems. The abstract Schwarz theory is applied to analyze the multilevel methods with Jacobi or Gauss-Seidel smoothers performed on local nodes on coarse meshes and global nodes on t...

متن کامل

Optimal-order Nonnested Multigrid Methods for Solving Finite Element Equations Iii: on Degenerate Meshes

In this paper, we consider several model problems where finite element triangular meshes with arbitrarily small angles (high aspect ratios) are utilized to deal with anisotropy, interfaces, or singular perturbations. The constant-rate (independent of the number of unknowns, the smallest angle, the interface discontinuity, the singular-perturbation parameter, etc.) convergence of some special no...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2005